A semismooth Newton method for a class of semilinear optimal control problems with box and volume constraints

نویسندگان

  • Samuel Amstutz
  • Antoine Laurain
چکیده

In this paper we consider optimal control problems subject to a semilinear elliptic state equation together with the control constraints 0 ≤ u ≤ 1 and ∫ u = m. Optimality conditions for this problem are derived and reformulated as a nonlinear, nonsmooth equation which is solved using a semismooth Newton method. A regularization of the nonsmooth equation is necessary to obtain the superlinear convergence of the semismooth Newton method. We prove that the solutions of the regularized problems converge to a solution of the original problem and a path-following technique is used to ensure a constant decrease rate of the residual. We show that, in certain situations, the optimal controls take 0− 1 values, which amounts to solving a topology optimization problem with volume constraint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems

In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...

متن کامل

On some nonlinear optimal control problems with affine control constraints

We investigate a class of nonlinear optimal control problems with pointwise affine control constraints. Necessary optimality conditions of first order and sufficient second order conditions are obtained. For the numerical solution of the optimal control problems a semismooth Newton method is proposed. Local superlinear convergence of the infinite dimensional method is proved. Finally, the prope...

متن کامل

Semismooth Newton Methods for Optimal Control of the Wave Equation with Control Constraints

In this paper optimal control problems governed by the wave equation with control constraints are analyzed. Three types of control action are considered: distributed control, Neumann boundary control and Dirichlet control, and proper functional analytic settings for them are discussed. For treating inequality constraints semismooth Newton methods are discussed and their convergence properties a...

متن کامل

Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems

A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2013